

OC Tutorial – Semiconductor Basics

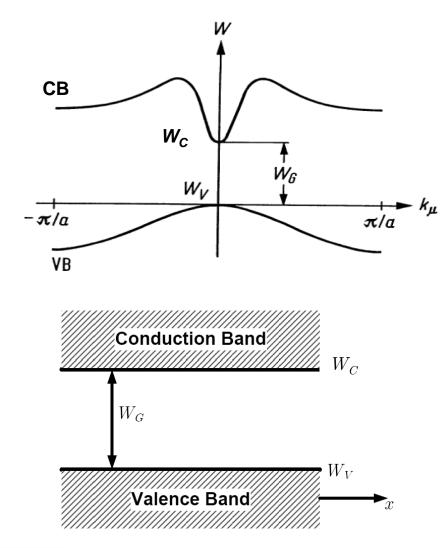
May 15, 2015

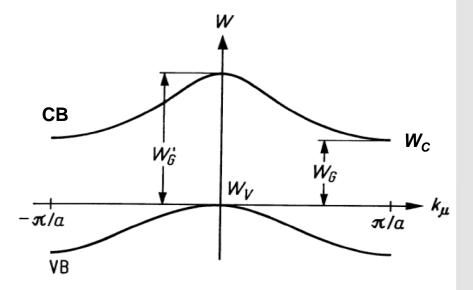
Wladick Hartmann Stefan Wolf

Institute of Photonics and Quantum Electronics (IPQ) Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Direct and Indirect Semiconductors

Direct semiconductor (e.g. GaAs, InP) Indirect semiconductor (e.g. Si, Ge)





Direct semiconductor

Maximum of valence band and minimum of conduction band at same k_u .

Indirect semiconductor

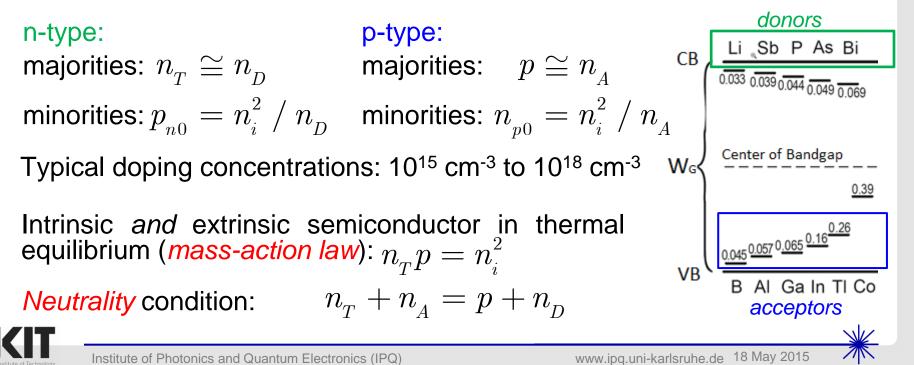
Maximum of valence band and minimum of conduction band at different k_{μ} .

Intrinsic and Extrinsic Semiconductor

Intrinsic semiconductor: Pure semiconductor with negligible amount of impurities. Electron and hole carrier concentrations in thermal equilibrium are determined by material properties and temperature:

$$n_T = p = n_i$$

Extrinsic semiconductor: Doping changes carrier concentrations in thermal equilibrium. *Donors* "donate" negatively charged electrons to the conduction band (n-type). *Acceptors* "accept" additional electrons, and positively charged "holes" are created in the valence band (p-type).



Carrier Concentration at Thermal Equilibrium

Density of states in the conduction band (ρ_c , number of electron states per energy interval), and in the valence band (ρ_V , number of hole states per energy interval):

$$\rho_{C}(W) = \frac{1}{2\pi^{2}} \left(\frac{2|m_{n}|}{\hbar^{2}} \right) \sqrt{W - W_{C}} \quad \rho_{V}(W) = \frac{1}{2\pi^{2}} \left(\frac{2|m_{p}|}{\hbar^{2}} \right) \sqrt{W_{V} - W_{C}}$$

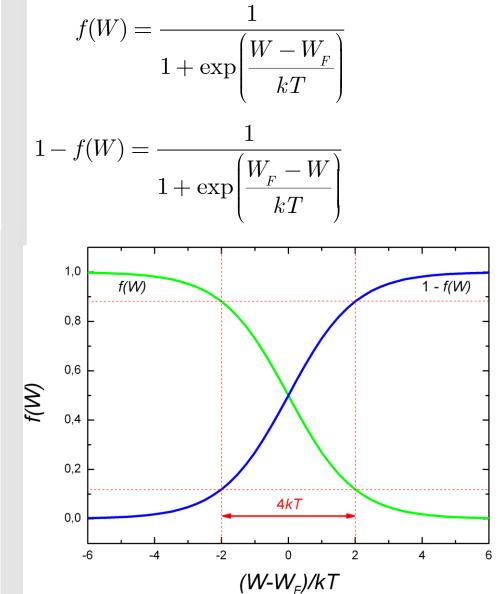
Carrier concentration in conduction band (n_T) and valence band (p):

$$n_T = \int_{W_C}^{\infty} \rho_C(W) f(W) dW \qquad p = \int_{-\infty}^{W_V} \rho_V(W) \Big[1 - f(W) \Big] dW$$

f(W) is the *Fermi-Dirac distribution function*. f(W) is the probability that a state at energy W is occupied by an electron.

1-f(W) is the probability that a state at energy *W* is not occupied by an electron, i. e., that it is occupied by a hole.

Fermi-Dirac Distribution Function



- *k* Boltzmann's constant
- kT Thermal energy kT = 25 meV at T = 293 K

 W_F Fermi energy

- At Fermi energy, $f(W_F) = 0.5$
- Position of Fermi level:
 - Intrinsic: Between W_V and W_C
 - n-type: W_F moves towards W_C
 - p-type: W_F moves towards W_V
- Transition region: $(0.88 > f > 0.12) \rightarrow \text{width } 4kT$ $\Delta f = 4kT/h = 24.2 \text{ THz}$

Boltzmann Approximation

If the Fermi level is far away (> 3kT) from the band edges W_C and W_V (as is the case for doping concentration of $n_D << N_C$ and $n_A << N_V$), then *Boltzmann's approximation* holds:

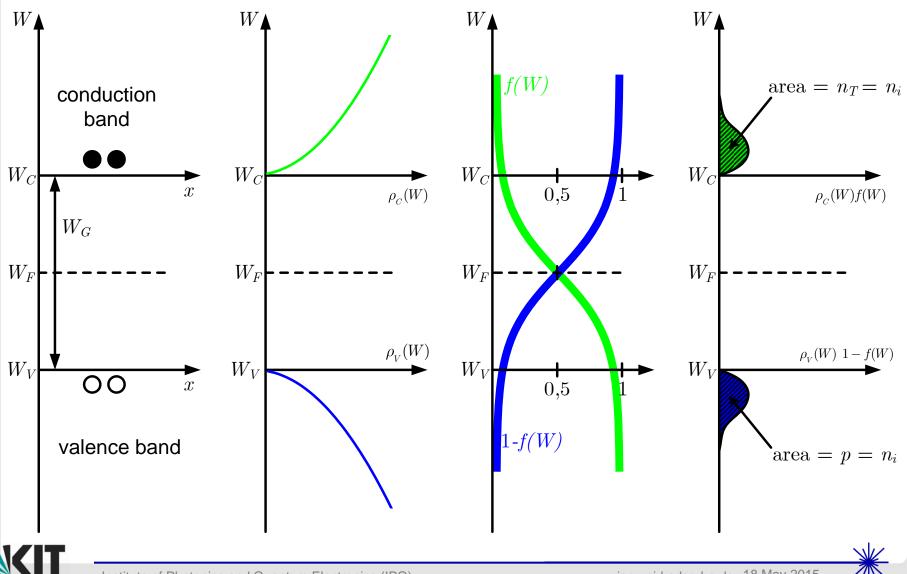
Solving the integrals for the carrier concentrations with Boltzmann's approximation gives:

$$\begin{split} n_T &= N_C \exp\left(-\frac{W_C - W_F}{kT}\right) \quad \text{with} \quad N_C = 2 \left(\frac{2\pi m_n kT}{h^2}\right)^{3/2} \\ p &= N_V \exp\left(-\frac{W_F - W_V}{kT}\right) \quad \text{with} \quad N_V = 2 \left(\frac{2\pi m_p kT}{h^2}\right)^{3/2} \quad N_{C,V} \approx 10^{19} \text{ cm}^{-3} \end{split}$$

 N_C and N_V are called effective density of states. Within kT from the band-edge, there are $0.75N_{C,V}$ states. For intrinsic semiconductors follows: $n_i = \sqrt{n_T p} = \sqrt{N_C N_V} \exp\left(-\frac{W_G}{2kT}\right)$ and $W_F = \frac{W_C + W_V}{2} + \frac{kT}{2} \ln \frac{N_V}{N_C}$

Visual Summary of Carrier Concentrations (1)

Intrinsic semiconductor in thermal equilibrium.

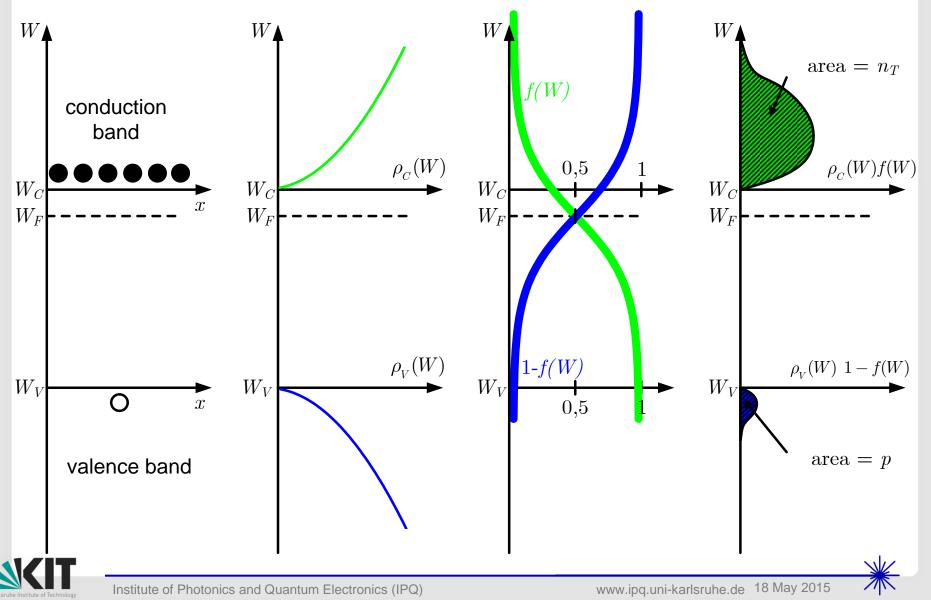


Institute of Photonics and Quantum Electronics (IPQ)

www.ipq.uni-karlsruhe.de 18 May 2015

Visual Summary of Carrier Concentrations (2)

Extrinsic semiconductor (n-type) in thermal equilibrium.



Currents in Semiconductors

 $\begin{array}{lll} \textit{Drift current} \text{ due to an electric field } E: & \mu_{n,p} & \text{carrier mobility} \\ \vec{J}_{F} = \vec{J}_{n,F} + \vec{J}_{p,F} = & en_{T}\mu_{n} + ep\mu_{p} & \vec{E} = \sigma \vec{E} & e & \text{elementary charge} \\ & \sigma & \text{conductivity} \end{array}$

Diffusion current due to a gradient of carrier concentration:

$$\vec{J}_{\scriptscriptstyle D} = \vec{J}_{\scriptscriptstyle n,D} + \vec{J}_{\scriptscriptstyle p,D} = eD_{\scriptscriptstyle n} \operatorname{grad} n_{\scriptscriptstyle T} - eD_{\scriptscriptstyle p} \operatorname{grad} p$$

Diffusion coefficients D_n and D_p for electrons and holes:

$$D_n = \mu_n U_T = \mu_n rac{kT}{e}$$
 and $D_p = \mu_p U_T = \mu_p rac{kT}{e}$

 $U_T = kT/e$ is called temperature voltage (= 25 mV @ T = 293 K)

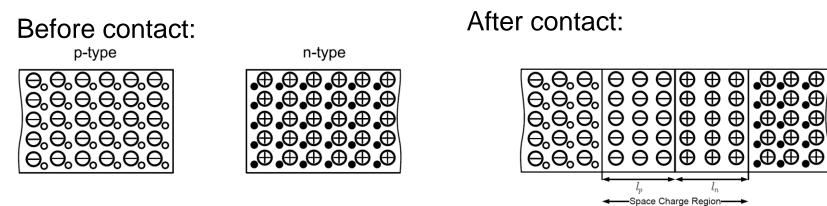
Diffusion lengths L_n and L_p for electrons and holes:

$$L_{_n} = \sqrt{D_{_n} \tau_{_n}}$$
 and $L_{_p} = \sqrt{D_{_p} \tau_{_p}}$

 τ_n , τ_p are the minority carrier lifetimes of electrons and holes.

pn-junction in Thermal Equilibrium

Bringing together a p-type and n-type semiconductor.



Electrons diffuse into the p-type semiconductor, and holes into the n-type semiconductor. The positively and negatively charged donor and acceptor ions in the *space charge region (SCR)* build up an electric field that counteracts diffusion.

In thermal equilibrium, there are zero net electron and hole currents, i.e. diffusion and drift currents compensate each other:

The *built-in potential* U_D of the pn-junction is given by:

$$U_{D} = U_{T} \ln \frac{n_{D} n_{A}}{n_{i}^{2}} = \frac{kT}{e} \ln \frac{n_{D} n_{A}}{n_{i}^{2}}$$

e

Current-Voltage Characteristics of pn-Diode

Applying an external voltage to the pn-junction \rightarrow no equilibrium

Under *reverse bias* condition (U < 0, "+" at n-type, "-" at p-type), charge carriers are removed to increase the SCR width: $n_T p < n_i^2$

Under *forward bias* condition (U > 0, "+" at p-type, "-" at n-type), charge carriers are injected to reduce the SCR width: $n_T p > n_i^2$

Concentration of minority charge carriers at the edges of the SCR increase/decrease exponentially with the applied voltage U.

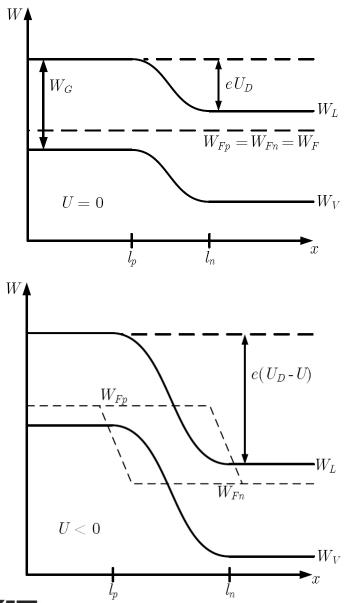
For example, the hole concentration change in the n-type region is:

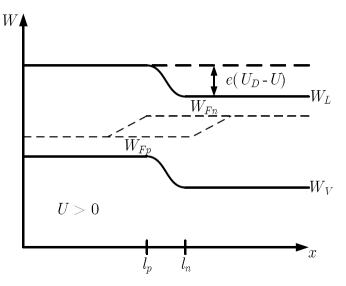
$$\Delta p_n(l_n) = p_{n0} \left(\exp\left(\frac{U}{U_T}\right) - 1 \right) \qquad \qquad \Delta p_n(x) = p_{n0}(l_n) \exp\left(-\frac{x - l_n}{L_p}\right)$$

Assuming only diffusion currents outside the SCR, the current-voltage characteristics of the pn-diode follows as:

$$I = \underbrace{F\left(\frac{eD_n}{L_n}n_{p0} + \frac{eD_p}{L_p}p_{n0}\right)}_{\text{Saturation current } I_S} \left(\exp\left(\frac{eU}{kT}\right) - 1\right) = I_S\left(\exp\left(\frac{U}{U_T}\right) - 1\right)$$

Band Diagrams





In thermal equilibrium, the Fermi level is flat, i.e. no net current flows.

In non-equilibrium, the Fermi level splits up into the quasi Fermi levels (QFL) W_{Fn} and W_{Fp} . A gradient of the QFL indicates current flow.

- U > 0 reduces barrier for carriers
- U < 0 increases barrier for carriers

Depletion-Layer and Diffusion Capacitance

Depletion-layer capacitance (dominating if reverse biased): The total width of the SCR varies according to the applied voltage. Thus also the amount of charges in the SCR changes. Taking the formula for a parallel plate capacitor yields:

$$C_{_{S}} = \varepsilon_{_{0}}\varepsilon_{_{\mathrm{r}}}\frac{F}{w(U)} \quad \text{with} \quad w(U) = l_{_{n}} - l_{_{p}} = \sqrt{\frac{2\varepsilon_{_{0}}\varepsilon_{_{\mathrm{r}}}}{e}\frac{n_{_{D}} + n_{_{A}}}{n_{_{D}}n_{_{A}}}} \ U_{_{D}} - U$$

Diffusion capacitance (dominating if forward biased): When applying a small AC signal, not all the minority carriers at the edge of the SCR follow the signal instantaneously. The stored minority charge (here: holes in an n-type semiconductor) is given by: